Course Code	Course Title	L	T	P	C
20SE013	BRIDGE ENGINEERING	3	0	0	3

PRE-REQUISITE COURSES: DESIGN OF STEEL, CONCRETE STRUCTURES AND FOUNDATION ENGINEERING

COURSE OBJECTIVES:

- 1. To understand the various types of bridges
- 2. To understand the codal provisions for loading and design standards of bridges.
- 3. To design the superstructure of bridge using different methods and loading conditions.
- 4. To understand the design of bearings

COURSE OUTCOMES:

At the end of the course, student will be able

CO's	Course Outcomes	PO's
1	To familiarize with the usage of codal provisions in the design of bridges	5
2	To analyze and design substructure elements of bridges	1,2
3	To analyze and design various types of bridges like T-Beam bridge, Slab bridge, box culvert.	1,2
4	To analyze and design of T-Beam bridge	1,2
5	To understand the suitability of bearings for bridges.	4

SKILLS:

- ✓ Identify the type of bridge suitable for different soil and environmental conditions.
- ✓ Design the bridge under primary and secondary loading conditions.

UNIT I:

INTRODUCTION: Introduction - Classification – Investigation for bridges - Economic span length- Loading standards – IRC and Railway loads – Impact.

UNIT-II:

BRIDGE SUB STRUCTURE: Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations.

UNIT-III:

BRIDGE SUPER STRUCTURE: Super Structure: Slab bridge- Wheel load on slab-effective width method- slabs supported on two edges- cantilever slabs- dispersion length-box culvert.

UNIT-IV:

T-BEAM BRIDGE: Design of T beam bridge- Pigeaud's method- design of longitudinal girders- Guyon-Messonet method- Hendry Jaegar method- Courbon's theory. (Ref: IRC-21).

UNIT-V:

BEARINGS FOR BRIDGES: Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Understand the complexities in design of bridges.

TEXTBOOKS:

- 1. CBRI, "Building materials and components", India, 1990.
- 2. Gerostiza C.Z., Hendrikson C. and Rehat D.R., "Knowledge based process planning for construction and manufacturing", Academic Press Inc.,1994

REFERENCES:

- 1. Koncz T., "Manual of precast concrete construction", Vol. I, II and III, Bauverlag, GMBH,1976.
- 2. "Structural design manual", Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 2009.