| <b>Course Code</b> | Course Title                              | L | T | P | C |
|--------------------|-------------------------------------------|---|---|---|---|
| 20SE022            | DESIGN OF UNDERGROUND WATER<br>STRUCTURES | 3 | 0 | 0 | 3 |

## PRE-REQUISITE COURSES: PRESTRESSED CONCRETE

## **COURSE OBJECTIVES:**

The main objective of this course is to learn the designs of underground water structures. Familiarize students with types & classification of underground openings, methodology & codal provisions. Understand the material properties, deformation analysis using analytical & numerical methods. To carry out the complete design of hydraulic tunnels & shafts. To study about the design based wedge & key block theory. Student must be able to design underground water tanks & retaining walls.

#### **Course Outcomes:**

At the end of the course student will be able to

| CO's | Course Outcomes                                                                     |      |
|------|-------------------------------------------------------------------------------------|------|
| 1    | To understand the design methodology & codal provisions for underground structures. | 1, 2 |
| 2    | Understand the stress deformation analysis.                                         | 2    |
| 3    | Design of hydraulic tunnels & shafts.                                               |      |
| 4    | To understand the design based wedge & key block theory.                            |      |
| 5    | Design underground water tanks & retaining walls.                                   |      |

# **SKILLS:**

- ✓ Material Properties & Stress deformation analysis using analytical & numerical methods.
- ✓ Design of hydraulic tunnels & shafts.
- ✓ Design of underground water tanks & retaining walls.

#### UNIT - I:

**INTRODUCTION** - Types and classification of underground openings, Factors affecting design, Design methodology, Functional aspects, Size and shapes, Support systems. Codal provisions.

## UNIT – II:

MODELLING & ANALYSIS OF UNDER GROUND STRUCTURES: Material Properties & Stresses- deformation analysis of openings - circular, elliptical, spherical, ellipsoidal and galleries with composite lining due to internal pressure, closed form solutions, BEM, FEM. Analysis of Tunnels & shafts using analytical and numerical methods.

#### **UNIT - III:**

**DESIGN OF UNDER GROUND STRUCTURES:** Design of underground structures using analytical methods, empirical methods based on RSR, RMR, Q systems. Design based on rock support interaction analysis. Observational method NATM, Convergence-confinement method. NATM Hydraulic tunnels, Shafts, Tunnel portals, Metro tunnels.

### **UNIT - IV:**

**DESIGN BASED ON WEDGE & KEY BLOCK THEORY:** Design based on Wedge failure and key block analysis. Design of Shafts and hydraulic tunnels. Stability of excavation face and Tunnel portals. Use of appropriate software packages.

## UNIT - V:

**CASE STUDIES:** Case Studies using design of underground water tanks – Circular & Rectangular. Analysis & Design of retaining walls, Counterfort retaining walls. Retrofitting of underground Structures.

### **TEXT BOOKS:**

- 1. R. S. Sinha, "Underground Structures: Design & Construction", Elsevier Science, 2<sup>nd</sup> December, 2012.
- 2. Rajendra Patel, "Concrete for Underground Structures", Scitus Publisher, January, 2017.

#### **REFERENCE BOOKS:**

- 1. Cui, Z.-D., Zhang, Z.-L., Yuan, L., Zhan, Z.-X., Zhang, W.-K, "Design of Underground Structures".
- 2. Punmia,B.C., Ashok Kumar Jain, "Design of reinforced concrete structures". Code of practice for liquid retaining structures, IS 3370 2009.