19EC213 MICROCONTROLLERS

Hours Per Week :

L	Т	Р	С
3	-	2	4

PREREQUISITE COURSE: Digital System Design.

COURSE DESCRIPTION AND OBJECTIVES:

This course introduces about microprocessor and microcontroller to the student. The course objective is to study the architecture, hardware components and software aspects of ARM LPC 2148 and Cortex M3.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes.

COs	Course Outcomes
1	Understand the evolution and architectures of ARM and ARM Cortex-M3 processors.
2	Program on LPC 2148 for the specific application.
3	Understand the peripherals used with microcontroller systems.
4	Compare the specifications and suitability of I2C, SPI, RTC, WATCHDOG TIMER, PWM generation blocks.
5	Develop applications and experiment to interface various peripherals to ARM Processors.

SKILLS:

- ✓ Identify suitable microprocessor / microcontroller and hardware components for a specific application.
- ✓ Develop Embedded-C or Assembly language programs using LPC 2148.
- ✓ Design microcontroller based systems using LPC 2148 / Cortex-M3.
- ✓ Develop the environment for interfacing peripherals with ARM processors.

SOURCE: https://positrontech.in/ eshop/wp-content/ uploads/2018/01/AVR-Microcontroller-Board.png

L-9

L-9

L-9

LPC 2148 COMPONENTS: PLL, General purpose I/O (GPIO), ADC and DAC, Timers and counters, Watchdog timer, Real-time clock, Interrupt controller.

ARM ARCHITECTURE & PROGRAMMING MODEL: ARM design philosophy, Registers, Program status register, Instruction pipeline, Interrupt and vector table, ARM processor families, Instruction set: Data processing instructions, Addressing modes, Branch, Load-Store instructions, PSR instructions,

LPC 2148 CONTROLLER ARCHITECTURE : Features, Architecture, Functional pin description, On-chip Flash memory, On chip SRAM, Memory Mapping, LPC 2148 programming - programming of

LPC 2148 GPIO ports, generation of PWM signals, simple programs.

UNIT-IV

UNIT - III

UNIT-I

UNIT - II

and Conditional instructions.

LPC 2148 PERIPHERALS: UART, USB, Features of I2C - bus serial I/O controller; SPI - serial I/O controller, pulse width modulator.

UNIT - V

ARM CORTEX-M3: Features, Architecture, Operation modes, NVIC, Instruction set developmentthumb-2 technology and instruction set architecture; Cortex-M3 applications.

LABORATORY EXPERIMENTS

LIST OF EXPERIMENTS

Simulation using LPC 2148:

- 1. Blinking of LED's.
- 2. Reading switches and glowing LED's.
- 3. Generation of PWM signals.

Interfacing with LPC 2148:

- 7 Segment LED. 1.
- 2. LCD Module.
- 3. 4x4 Hex keypad.
- 4. DC motor control.
- 5. Real time clock.
- 6. Temperature sensor.
- 7. Bluetooth module.
- 8. Wi-Fi Module.
- 9. Micro SD Card.

70

TOTAL HOURS: 30

L-9

L-9

TEXT BOOKS:

- 1. Andrew N Sloss, Dominic Symes and Chris Wright, "ARM system developer's guide", Elsevier - Morgan Kaufmann Publishers, 2008.
- Joseph Yiu, "The definitive guide to the ARM CORTEX-M3", 2nd edition, Elsevier Newnes, 2010.

REFERENCE BOOKS:

- 1. Steve Furber, "ARM System on Chip Architecture", 2nd edition, Pearson education, 2000.
- 2. Martin Trevor, "The Insider's Guide to the ARM7 based microcontrollers", Hitex Ltd., 2006.
- William Hohe and Christopher Hinds, "ARM Assembly Language", 2nd edition, CRC Press, 2015.
- 4. David Seal, "ARM Architecture Reference Manual", Addison-Wesley, 2001.