19HS105

ENGINEERING MATHEMATICS I (E)

LINEAR ALGEBRA & VECTOR CALCULUS

L	Т	Р	С
3	0	2	4

Total	Hours	

L	Т	Р	[\	WA/RA	SSH/HSH	CS	SA	S	BS
45	-	30		20	45		10	-	5

COURSE DESCRIPTION AND OBJECTIVES:

To acquaint students with principles of mathematics through matrices, vector calculus, differential equations that serves as an essential tool in several Engineering applications.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

COs	Course Outcomes	POs
1	Compute the solutions of differential equations using analytical techniques.	1, 2
2	Appreciate the use of Cayley-Hamilton theorem.	1, 2
3	Perform vector differentiation and integration and applications.	1, 2
4	Determine rank, Eigen values and Eigen vectors of a matrix and solution of a system of linear equations.	1, 2
5	Use software tools to obtain and verify the solutions	5

SKILLS:

- ✓ Find the rank of matrix by different methods.
- ✓ Solve the system of linear equations.
- ✓ Compute Eigen values and Eigen vectors of a matrix.
- ✓ Convert the matrix into diagonal form by suitable method.
- ✓ Compute gradient, divergence and curl.
- ✓ Evaluate surface and volume integrals through vector integral theorems.
- ✓ Solve first order ordinary differential equations by various methods.

Source: https://www.google.co.in/

I Year I Semester 🔳 🔳

UNIT – I

o Compute the rank of the matrix

ACTIVITIES:

- Solve the system of simultaneous equations, Eigen values and Eigen vectors with any software like MATLAB.
- o Compute the power of matrix and inverse of matrix by Cayley – Hamilton Theorem with any software like MATLAB.
- Evaluate surface and volume integrals through vector integral theorems.
- o Compute exact solutions of first order differential equations by various methods.

MATRICES : Rank of a matrix, Normal form, Triangular form, Echelon form; Consistency of system of linear equations, Gauss-Jordan method, Gauss elimination method, Gauss-Seidel method.

UNIT – II

EIGEN VALUES AND EIGEN VECTORS : Eigen values, Eigen vectors, Properties (without proofs); Cayley-Hamilton theorem (without proof), Power of a matrix, Diagonalisation of a matrix.

UNIT – III

VECTOR DIFFERENTIATION : Review of Vector Algebra (Not for testing).

Vector function, Differentiation, Scalar and Vector point functions, Gradient, Normal vector, Directional Derivate, Divergence, Curl, Vector identities.

UNIT – IV

VECTOR INTEGRATION : Line integral, Surface integral, Volume integral, Vector Integral Theorems : Green's theorem for plane, Gauss divergence theorem, Stokes' theorem (without proofs)

UNIT – V

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS: Basic Definitions, Variable separable and homogeneous differential equations, Linear differential equations, Bernoulli's differential equations, Exact and non-exact differential equations.

LABORATORY EXPERIMENTS

LIST OF EXPERIMENTS

- 1. Mathematical Preliminaries.
- 2. Algebra of Matrixes.
- 3. To find Rank of a Matrix.
- 4. To find Triangular & Echelon form of a Matrix.
- 5. Solving system of equations using Cramer's rule.
- 6. Solving system of equations using Matrix inversion method.
- 7. Solving system of equations using Gauss-Jordan method, Gauss elimination method.
- 8. To find Eigenvalues, Eigenvectors of a Matrix.
- 9. Cayley-Hamilton theorem for a square Matrix.
- 10. Algebra of Vectors.

L-9

L-9

L-9

L-9

TOTAL HOURS: 30

L-9

TEXT BOOKS:

- 1. H. K. Dass and Er. Rajanish Verma, "Higher Engineering Mathematics", S. Chand & Co., 3rd edition, 2015.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44th edition, 2018.

REFERENCE BOOKS:

- 1. John Bird, "Higher Engineering Mathematics", Routledge (Taylor & Francis Group), 2018.
- 2. Srimanta Pal and Subodh C. Bhunia, "Engineering Mathematics", Oxford Publications, 2015.
- 3. B. V. Ramana, "Advanced Engineering Mathematics", TMH Publishers, 2008.
- 4. N. P. Bali and K. L. Sai Prasad, "A Textbook of Engineering Mathematics I, II, III", Universal Science Press, 2018.
- 5. T. K.V. Iyengar et al., "Engineering Mathematics, I, II, III", S. Chand & Co., 2018.