21GPBR211 FUNDAMENTALS OF PLANT BREEDING

Hours Per Week:

L	Т	Р	С
2	-	2	3

Total Hours:

L	Т	Р
30	-	30

COURSE DESCRIPTION AND OBJECTIVES:

The aim of this course to expose the students to basic and applied principles of Plant Breeding, mode of reproduction and breeding methods for crop improvement

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

COs	Course Outcomes	
1	Understanding the plant breeding methods for self, cross and vegetative propagated crops	
2	Greater understanding about the advantages and disadvantages of breeding techniques to become self-entrepreneur or work in seed companies	
3	Learn about centers of origin / diversity, components of Genetic variation; Heritability and genetic advance	

SKILLS:

- ✓ Design plant breeding methods for self, cross and vegetative propagated crops
- ✓ Expertise in analysis of seed and plant material quality
- √ Practice pollination methods

Source:

https://www.gulfagriculture.com/ breakthrough-in-global-dataexchange-on-plant-breeding/

ACTIVITIES:

- o Draw floral structure of selfpollinated and cross pollinated crops
- o Demonstrate emasculation and hybridization techniques
- o Estimation
 of heterosis,
 inbreeding
 depression and
 heritability
- o Prepare Layout of field experiments

UNIT - 1

History: Historical development, concept, nature and role of plant breeding, majorachievements and future prospects; Genetics in relation to plant breeding; Heritability and genetic advance

UNIT - 2

Modes of Reproduction: Modes of reproduction and apomixes; self – incompatibility and male sterility genetic consequences, cultivar options; Domestication, Acclimatization, introduction, Centre of origin / diversity; Genetic basis and breeding methods in self-pollinated crops - mass and pure line selection, hybridization techniques and handling of segregating population (Single seed descent, Bulk Pedigree)

UNIT - 3

Concept: Multiline concept; Concepts of population genetics and Hardy Weinberg Law; Genetic basis and methods of breeding cross pollinated crops, modes of selection; Heterosis and inbreeding depression, development of inbred lines and hybrids, composite and synthetic varieties

UNIT - 4

Breeding Methods: Breeding methods in asexually propagated crops, clonal selection and hybridization; Wide hybridization and pre-breeding; Polyploidy in relationto plant breeding; mutation breedingmethods and uses; Breeding for important biotic and abiotic stresses; Haploids and it's significance in Breeding. Aneuploids, Monosomics, Trisomics and Nullisomics and their analysis

UNIT - 5

Tools-DNA: Biotechnological tools - DNA markers and marker assisted selection. Genome editing Participatory Varietal Selection (TRICOT Method)

LABORATORY EXPERIMENTS

LIST OF EXPERIMENTS

- 1. Plant Breeder's kit
- 2. Study of germplasm of various crops
- 3. Emasculation and hybridization techniques in self-pollinated crops rice, groundnut
- 4. Emasculation and hybridization techniques in self-pollinated crops green gram, sesame
- 5. Emasculation and hybridization techniques in cross pollinated crops maize, castor
- Emasculation and hybridization techniques in often cross pollinated crops cotton, red gram
- 7. Consequences of inbreeding on genetic structure of resulting populations
- 8. Study of male sterility systems
- 9. Handling of segregation populations
- 10. Methods of calculating mean, range, variance, standard deviation
- 11. Designs used in plant breeding experiments
- 12. Layout of field experiment
- 13. Analysis of Randomized Block Design
- 14. Estimation of heterosis, inbreeding depression and heritability
- Prediction of performance of double cross hybrids; work out the mode of pollination in a given crop and extent of natural out crossing

REFERENCES:

1. Gupta, S.K. 2010. Plant Breeding Theory and Techniques. Wiley India Pvt. Ltd. New Delhi

- Allard, R.W. 2010. Principles of Plant Breeding. John Wiley and Sons, New York.Poehlman, J.M. and Borthakur, D. 1995. Breeding of Asian Field Crops. Oxford and IBH Publishing Co., New Delhi
- 3. Sharma, J.R. 1994. Principles and Practice of Plant Breeding Tata McGraw Hill Publishing Company Ltd., New Delhi
- 4. Phundan Singh, 2014. Essentials of Plant Breeding. Kalyani Publishers, New Delhi
- 5. Singh, B.D. 2015. Plant Breeding: Principles and Methods. Kalyani Publishers, New Delhi
- 6. Gupta, S.K. 2010. Plant Breeding Theory and Techniques. Wiley India Pvt. Ltd. New Delhi
- 7. Allard, R.W. 2010. Principles of Plant Breeding. John Wiley and Sons, New York
- 8. Poehlman, J.M. and Borthakur, D. 1995. Breeding of Asian Field Crops. Oxford and IBH Publishing Co., New Delhi
- 9. Sharma, J.R. 1994. Principles and Practice of Plant Breeding. Tata McGraw Hill, Publishing Company Ltd., New Delhi